Test Case 1b.3:Pure Sway

Conditions

• Captive pure sway motion in still water

• Pitch and heave free; roll fixed

• With rudder

• With Propeller

Prescribed PMM motions:

• Sway motion : $\eta_{PMM} = -2S_{mm}\sin(2\pi\omega t)$

• Sway velocity: $v_{PMM} = -2(2\pi\omega) S_{mm} \cos(2\pi\omega t)$

• Sway acceleration : $\dot{v}_{PMM} = 2 (2\pi\omega)^2 S_{mm} \sin(2\pi\omega t)$

• Heading angle : ψ =0

• Yaw rate : $r_{PMM} = 0$

• Yaw acceleration : $\dot{r}_{PMM} = 0$

• Non-dimensinalized sway velocity : $v' = \max(v_{PMM})/U_c$

where $2S_{mm}$ is the sway amplitude [m] and ω is the frequency of PMM rotations [Hz].

F_n [-]	R_n [-]	L_{PP} [m]	$U_c [\mathrm{m/s}]$	n [rps]	$\delta [\mathrm{deg}]$	$2S_{mm}[m]$	$\omega [\mathrm{Hz}]$	v' [-]
0.142	4.6×10^6	5.52	1.047	8.59	0.0	0.5	0.0284	0.0852

Items and Remarks

Figure Number	Items	Remarks
Fig 1b.3-1	Time series of non-dimensionalized X-force (X')	To be compared with experimental results.
Fig 1b.3-2	Time series of non-dimensionalized Y-force (Y')	To be compared with experimental results.
Fig 1b.3-3	Time series of non-dimensionalized Y-aw-moment (N')	To be compared with experimental results.
Fig 1b.3-4	Time series of non-dimensionalized Thrust force (T'_x)	To be compared with experimental results.
Fig 1b.3-5	Time series of non-dimensionalized Rudder X-force (R'_x)	To be compared with experimental results.
Fig 1b.3-6	Time series of non-dimensionalized Rudder Y-force (R'_y)	To be compared with experimental results.

- Coordinate system for comparisons is fixed to midship on the undisturbed water plane. (see Figure 1)
- Froude number F_n and Reynolds number R_n are defined using towing carriage speed (U_c) and length between perpendiculars (L_{PP}):

$$F_n = \frac{U_c}{\sqrt{g \cdot L_{PP}}}, \quad R_n = \frac{U_c \cdot L_{PP}}{\nu}$$

where g is the gravitational acceleration and ν is the kinematic viscosity.

• n is the propeller revolution rate [rps] and δ is rudder angle [deg].

• All CFD predicted force coefficients should be reported using the provided ship length L_{PP} , mean draft T_m and ship speed U. Force coefficients are defined as follows:

$$\begin{split} X' &= \frac{X + M(\dot{u} - rv - X_G r^2 - Y_G \dot{r})}{\frac{1}{2} \rho U^2 L_{PP} T_m}, \quad Y' = \frac{Y + M(\dot{v} + ru - Y_G r^2 + X_G \dot{r})}{\frac{1}{2} \rho U^2 L_{PP} T_m} \\ N' &= \frac{N + I_z \dot{r} + M(X_G (\dot{v} + ru) - Y_G (\dot{u} - rv))}{\frac{1}{2} \rho U^2 L_{PP}^2 T_m} \\ T'_x &= \frac{T}{\frac{1}{2} \rho U^2 L_{PP} T_m}, \quad R'_x = \frac{X_R}{\frac{1}{2} \rho U^2 L_{PP} T_m}, \quad R'_y = \frac{Y_R}{\frac{1}{2} \rho U^2 L_{PP} T_m} \end{split}$$

where M is mass of a ship and r is the yaw rate. N' is around the origin of the coordinates.

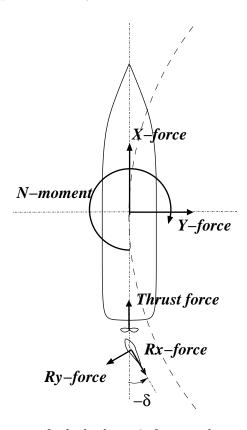


Figure 1: Coordinate system for hydrodynamic forces and moment for dynamic PMM